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Abstract

This paper introduces a approach to quantify redundancy in a certain class of
directed graphs by comparing the Shannon entropy of simple-path distributions with
the maximal entropy achieved by a tree structure. By defining an energy filtration
based on the length of the shortest simple path from a unique root, we derive a filtered
entropy measure that highlights how alternative pathways affect network uncertainty.
Applications to ecological food webs are discussed.

1 Introduction

Understanding redundancy in complex networks is critical to unraveling their resilience
and structural properties. In many real-world systems—such as ecological food webs,
communication networks, and supply chains—redundant pathways provide alternative
routes that can safeguard the system against disruptions. This paper introduces a novel
approach to quantify network redundancy through a filtered Shannon entropy framework,
bridging theoretical insights from information theory with tangible biological implications.

We consider a directed graph G = (V, E) that is finite, connected, and features a unique
root vertex R (with in-degree zero) such that every other vertex in V is reachable from
R via at least one simple path. The energy of each vertex is defined as the length of its
shortest simple path from R, which naturally induces a filtration of the graph:

Gk)={veV:Ew) <k

This energy-based perspective allows us to progressively reveal the network’s structure and
to investigate how alternative pathways—embodied in redundant edges—emerge as the
system unfolds.



At each energy level k, we derive a probability distribution on G(k) based on the counts of
distinct simple paths from R. In a tree, where each vertex is reached by a unique path, the
distribution is uniform and the entropy is maximized:

Hryee (k) = log |G(K)|.

However, in the presence of redundant links, multiple paths converge on the same vertices,
skewing the distribution and lowering the observed entropy Hg (k). We capture this
deviation by defining the redundancy measure

oG (k) = Hryvee(k) — Hg (k).

Beyond its mathematical elegance, our framework has important biological implications.
In ecological food webs, redundant pathways can facilitate multiple routes for energy and
nutrient transfer, effectively buffering the ecosystem against species loss or environmental
disturbances. Empirical observations suggest that ecosystems with higher redundancy
often exhibit greater stability and resilience. Moreover, the concepts developed here have
potential applications in analyzing robustness in engineered, social, and economic networks.

In the sections that follow, we detail the theoretical underpinnings of our model, provide
illustrative examples, and discuss broader applications. By integrating insights from network
theory and ecological studies, our work contributes a versatile tool for analyzing the resilience
of complex systems.

2 Background

In this section, we review key concepts from network theory and information theory that
form the basis for our study of redundancy in food web graphs. We focus in particular on
the role of redundant edges—those that do not lie on the shortest simple paths from the
root vertex through its predecessors—in shaping the uncertainty and resilience of these
networks.

2.1 Network Theory, Directed Graphs, and Redundancy

Graph theory offers a flexible framework for modeling complex systems such as ecological
food webs. Here, a food web is represented as a directed graph G = (V, E), where vertices
V' denote species (or trophic groups) and directed edges E represent feeding relationships.
A common special case is the tree, a connected acyclic graph in which each vertex (except



a unique root R) is reached by a single simple (non-repeating) path. This tree structure
serves as a benchmark because it guarantees a uniform distribution of paths from the root,
thereby maximizing the network’s Shannon entropy.

In contrast, many real-world food webs contain redundant edges—additional connections
that do not participate in the shortest simple paths from R. These edges create alternative
pathways between vertices, meaning that some species can be reached by more than one
route. For example, in the food web diagram of Figure [5| certain edges (drawn in red)
illustrate these redundancies. Although they do not change the minimal energy required to
reach a given species, such redundant links can significantly skew the distribution of simple
paths, as they introduce additional routes that converge on the same vertices.

2.2 Shannon Entropy and Path Distributions

Shannon entropy, introduced by Claude Shannon [I], quantifies the uncertainty in a
probability distribution. In the context of a food web, we derive a probability distribution
from the counts of distinct simple paths from the unique root R to each vertex v. In a
tree, where each vertex is accessible via a unique route, the distribution is uniform and the
entropy is maximized:
Hryee (k) = log |G(K)],

where G(k) denotes the subgraph containing all vertices with energy at most k (i.e., vertices
reachable within & steps).

However, when redundant edges are present, some vertices are reached via multiple distinct
paths. If we denote by Q(v) the number of simple paths from R to v and by

veG(k)
the total number of paths within the subgraph G(k), the probability of reaching vertex v
becomes
) _ Q)

The Shannon entropy at energy level k is then given by

Hg(k)=— Y pPlog (pi'“))-

veG(k)

The presence of redundant edges tends to concentrate the probability distribution on vertices
that can be reached via multiple pathways, thereby reducing the overall entropy relative to
the tree case.



2.3 Redundancy Measure and Ecological Implications

We quantify the loss in entropy due to redundant edges by defining a redundancy measure:
d)G(k) = HTree(k) - HG(k)

A value of ¢ (k) = 0 indicates a tree-like structure with no redundant links, while ¢ (k) > 0
signifies that redundancy is present. In ecological terms, these redundant pathways can
provide alternative routes for energy and nutrient flows. Although such redundancy may
lower the entropy by concentrating the path distribution, it can also confer resilience to the
ecosystem by buffering against the loss of any single pathway.

The example in Figure [5| demonstrates this concept vividly. The dashed and red edges
highlight redundant connections—edges that do not lie on the shortest simple paths but
nonetheless contribute to the network’s complexity. Their presence, while reducing the
maximal entropy expected in a tree-like structure, reflects the intricate and potentially
stabilizing interactions found in real food webs.

By integrating these insights from network theory and information theory, our approach
provides both a theoretical and practical framework for understanding how redundant edges
influence the structural uncertainty and resilience of ecological networks.

3 Theoretical Framework

In this section, we develop the theoretical underpinnings of our approach by introducing
the graph model, defining key quantities such as path counts and energy, and formulating
the Shannon entropy for directed graphs.

3.1 Graph Model and Definitions

Let G = (V, E) be a finite, connected, directed graph with a unique vertex R of in-degree
zero, such that there is at least one simple path (i.e., a path that does not repeat vertices)
from R to every vertex v € V. In order to analyze the structure of G progressively, we
define the energy of a vertex v, denoted £(v), as the length of the shortest simple path
from R to v. This energy concept provides a natural filtration of the graph:

Gk)={veV:&w) <k}

The subgraph G(k) contains all vertices that can be reached from R within k steps.



3.2 Path Counting and Probability Distributions

For each vertex v € G(k), let Q(v) denote the number of distinct simple paths from R to v
that lie entirely within G(k). In a tree structure (i.e., a graph without redundant links),
we have Q(v) = 1 for every v, as there is exactly one simple path from R to each vertex.
However, in graphs with redundant links, some vertices may be reachable via multiple
paths, so Q(v) > 1.

Define the total number of simple paths within G(k) as:

T(k)= > Qv).
veG(k)

This allows us to define a probability distribution on the vertices of G(k) by setting:
x _ Q)

This probability represents the likelihood that a randomly chosen simple path from R
(within energy level k) ends at vertex v.

3.3 Shannon Entropy in Graphs

Using the probability distribution {pgk)}veg(k), we define the Shannon entropy at energy

level k as:
He(k)=— Y pPlog (pik))-
veG(k)

For a tree-like graph, where every vertex is reached by a unique path, the distribution is
uniform over G(k). In this ideal case, the maximum possible entropy is:

HTree(k) = log (’G(k‘)’) :

We then define a redundancy measure by comparing the observed entropy Hg(k) with the
maximal entropy Hryee(k):

¢G(k) - HTree(k> - HG(]C)

The quantity ¢ (k) serves as a quantitative indicator of redundancy:

e ¢c(k) = 0 indicates that the network is tree-like up to energy level k, with no
redundant pathways.



e ¢ (k) > 0 indicates the presence of redundant links, where multiple simple paths
converge onto the same vertices, thereby reducing the entropy.

By analyzing ¢ (k) across increasing energy levels, we obtain a dynamic picture of how
redundancy—and thus structural complexity—evolves throughout the network. This
framework is not only theoretically appealing but also provides practical insights into
identifying critical hubs, bottlenecks, and overall network resilience.

4 Examples

In this section, we illustrate our theoretical framework with several examples.

4.1 Example 1: Directed Tree

Consider a simple directed tree with vertices
{R7 A7 B’ C}?

and edges
R—~A A—B, A-—C.

In this tree, every vertex (except R) is reached by exactly one simple path, yielding a
uniform distribution of paths.

Define the energy £(v) as the length of the shortest simple path from R to v. Then:
E(R)=0, &EA)=1, &B)=2, E(C)=2.
Let G(2) ={R, A, B,C}. Since the graph is a tree, we have

Q(v) =1 forallve G(2).



Thus, the total number of paths is
T2)=1+1+14+1=4.

The probability distribution on G(2) is

1
Po =1 forve {R, A, B,C}.

The filtered Shannon entropy is then:

He2)=—- ) ilog (i) = log 4.

vEG(2)
Since this is the maximal entropy for 4 vertices, we have:
Hryee(2) = log 4.
Thus, the redundancy measure is
66(2) = Hrree(2) — Ho(2) = log4 — log 4 = 0.

This confirms that the tree has no redundancy.

4.2 Example 2: Graph with a Redundant Link

Now, consider a graph with vertices
{R,A,B,C},

and edges
R—-A A—B, A—C, R-— B.

In addition to the tree structure, a new edgeR — B is introduced, making the edge A — B
redundant.




The energies are:

For the filtration at k£ = 1, we have:
G(1) ={R, A, B}.
Now, count the simple paths (restricted to G(1)):
QR)=1, QA)=1(R—A4), QB)=2(viaR— Band R— A — B).
Thus, the total number of paths is:
T1)=14+1+2=4.

The probability distribution is:

_1 _ 1 21
pR_47 pA_47 PB = = 3

The filtered entropy is:

1.1 1.1 1, 1
Hg(1) = — [ =log = + ~log — + = log = | ~ 1.0397.
a(1) <40g4+40g4+20g2)

For comparison, if the distribution were uniform on G(1) (3 vertices), the maximum entropy
would be:
HTree(l) = log 3.

Thus, the redundancy measure at energy level 1 is:

$g(1) ~ 1.098 — 1.0397.

4.3 Example 3: Larger Network with a Critical Hub

Consider a network with vertices
{R,A,B,C7 D}7

and edges
R—+A A—-»B, A—-C, B—~D, C—D, A—D.

The edge C' — D is redundant as is B — D.



The energies are:

E(R)=0, EA)=1, EB)=2, E(C)=2 ED)=2

Thus, G(2) = {R, A, B,C, D}. The path counts are:
QR)=1, QA)=1, QB)=1, QC)=1.
For D, the simple paths are:

1. R>A—>D,
2. R—-A—B—D,
3. R-A—C—D.

Hence, Q(D) = 3 and
T2)=14+14+14+1+3=T7.

The probability distribution is:

1 1 1 1 3
pR_77 pA_77 pB_77 PC—,?a pD_7

Thus, the filtered entropy is:

1 1 3 3
Hg(2) = — <4 : ?log? + 7log7) ~ 1.47

The maximal (tree) entropy for 5 vertices is:
HTree(2) = log 5.
So the redundancy measure is:

66 (2) ~ 1.609 — 1.47



5 Entropy Analysis of a Food Web Graph

In this section, we analyze the food web graph shown in Figure |5 from [5] using our filtered
entropy framework. The graph G has six vertices:

V ={R, A B,C, D, E},

and the following directed edges:

e Edge 1: R— A
e Edge2: R— B
e Edge 3: B — A (redundant)
e Edged: A—C
e Edge 5: B— FE
e Edge 6: D — B (redundant)
e Edge 7: C' — D
e Edge8 C — F

e Edge 9: D — E (redundant)
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For this graph:

E(R) =0,

£(A)=1, viaR— A,

&B)=1, viaR— B,
£(C)=2, viaR—A—C,
E(E)=2, viaR— B—E,
ED)=3, viaR—A—C—D.

Next, we count the number Q(v) of distinct simple paths from R to each vertex (avoiding
repeated vertices), taking into account redundant links:

e R: Q(R) =1 (trivially).
o A:

— R — A (Edge 1),
— R— B — A (Edges 2 and 3).

Hence, Q(A) = 2.

B: Q(B) =1 via R — B (Edge 2).

o ('
— R— A — C (Edges 1 and 4),
— R— B — A— C (Edges 2, 3, and 4).
Thus, Q(C) = 2.
o D:
- R—A—C— D (Edges 1, 4, and 7),
- R—B—A—C— D (Edges 2, 3,4, and 7).
So, Q(D) = 2.

FE: E can be reached via several routes:

1. R— B — E (Edges 2 and 5),
2. R—+A— C— E (Edges 1, 4, and 8),
3. R B — A— C — E (Edges 2, 3, 4, and 8),
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4. R-A—C— D — FE (Edges 1, 4, 7, and 9),
5 R+ B—-A—C—D— E (Edges 2, 3,4, 7, and 9),
6. R~ A—-C—D— B— E (Edges 1,4, 7, 6, and 5).

Therefore, Q(E) = 6.

The total number of simple paths is:

T=> Q) =1+2+1+2+2+6=14
veV

Probability Distribution and Shannon Entropy

We assign each vertex a probability:

p(v) = Q:(Fv)
Thus, we have:
pR) =5, pA) =2 pB) =L, pO)=2, pD) =2, pE)=2

The Shannon entropy of the graph is then

He=—-> p(v)logp(v).
veV
Substituting the values:

1 1 1.1 1. 1 1 1 1. 1 3 3
Ho=—(—1log— + -log=+ —log— + - log = + - log = + “log = | ~ 1.574
¢ <14 ST T °g14+7°g7+7°g7+70g7> o746

If G were a tree (with a unique path to each vertex), the maximum entropy for 6 vertices
would be:
Hryee = log6 = 1.7918

Thus, the redundancy measure is

bc = Hiveo — He ~ 1.7918 — 1.5746 =~ 0.2172

The calculations above show that redundant links (e.g., the alternative pathway R — B — A
for reaching A) result in a probability distribution that is more skewed compared to a
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uniform (tree) distribution. Consequently, the Shannon entropy H¢ is lower than the
maximum entropy Hryee achievable in a non-redundant network. The redundancy measure
oc ~ 0.2172 quantitatively reflects the impact of these redundant pathways on the overall
uncertainty of energy flow in the food web.This example underscores how an entropy-based
approach can capture the structural complexity of ecological networks, complementing the
framework developed in Allesina et al. (2009) [5].
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