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1 Introduction

Classical and quantum mechanics have long been viewed through different lenses, yet their interplay is rich
with geometric insights. One of the unifying ideas in this interplay is the notion of integrability, which
allows the intricate dynamics of a system to be decomposed into simpler, well-organized structures. In the
classical setting, integrable systems are characterized by the presence of sufficient conserved quantities to
foliate the phase space into invariant tori—a perspective elegantly captured by the Liouville-Arnold theorem
and underpinned by Noether’s theorem [6]. Noether’s theorem is the cornerstone of this picture: it ensures
that every continuous symmetry of the action corresponds to a conserved quantity, which in turn defines
invariant submanifolds essential for integrability.

In our previous work [1, 2], we developed obstruction results for toric integrable geodesic flows in odd dimen-
sions. In particular, it was shown that if a compact Riemannian manifold admits a toric integrable geodesic
flow (with either n ̸= 3 odd or infinite fundamental group), then its cosphere bundle must be equivariantly
contactomorphic to that of a torus. These results not only supply strong topological restrictions but also
provide a framework for understanding the semiclassical correspondence in integrable systems.

In the quantum realm, integrability takes on a subtler character. Quantum completely integrable (QCI) sys-
tems display spectral properties and eigenfunction localizations that mirror the underlying classical invariant
structures. As the semiclassical limit is approached, quantum eigenfunctions often concentrate along these
classical trajectories, revealing a deep correspondence between the two regimes [3].

A particularly compelling setting for these ideas is provided by compact 2-dimensional Riemann surfaces.
Here, the cosphere bundle emerges as a natural phase space endowed with a canonical contact structure.
This structure not only governs the classical geodesic flow but also hints at the seeds of quantum behav-
ior. Moreover, the process of symplectization—which extends the contact manifold into a full symplectic
manifold—bridges the gap between the “quantum boundary” and the “classical bulk.”

This article is devoted to developing a geometric perspective that unifies classical mechanics, quantum me-
chanics, and even aspects of gravitational dynamics by focusing on the bundle structure of the cosphere
bundle and its symplectization. By drawing an analogy with holographic principles, we suggest that the
contact geometry on the cosphere bundle not only orchestrates the classical dynamics of geodesic flows but
also underpins the localization properties of quantum eigenfunctions. In doing so, we open a window toward
understanding how quantum and classical descriptions might emerge from a common geometric foundation.

In the sections that follow, we first review classical dynamics and toric integrability, then describe the symplec-
tization process that lifts these dynamics into the symplectic bulk. We next explain how quantum mechanics
on the base manifold is encoded in this geometry, and finally, we present a holographic perspective that
synthesizes these ideas.

2 Classical Dynamics and Toric Integrability

For a 2-dimensional compact Riemannian manifold Q, one of the most natural dynamical systems to study is
the geodesic flow. This flow describes the motion of a free particle along geodesics on Q, and it is generated
by the Hamiltonian

H(q, p) =
1

2
gij(q)pipj ,

where (q, p) are local coordinates on the cotangent bundle T ∗Q. Here, we focus on the punctured cotangent
bundle T ∗Q \ {0}, since excluding the zero section avoids trivial or singular behavior and highlights the
nonzero momenta that drive the dynamics.
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The geometric foundation for integrability is provided by Noether’s theorem, which asserts that every con-
tinuous symmetry of the action of a physical system corresponds to a conserved quantity. In the context of
geodesic flows, these conserved quantities are responsible for the existence of invariant submanifolds in phase
space. When the system exhibits additional symmetry, it can be described as integrable. More precisely, the
geodesic flow is said to be toric integrable if there exists an effective Hamiltonian torus action on T ∗Q\{0}
that preserves the symplectic form and commutes with the flow. This symmetry guarantees, via Noether’s
theorem, the existence of enough independent conserved quantities so that the joint level sets form invariant
tori in phase space—an embodiment of the Liouville-Arnold theorem [6].

Our earlier results in [1, 2] establish that under these toric integrability assumptions (in the odd-dimensional
or infinite fundamental group cases), the topological and contact-geometric structure of the cosphere bundle
is severely restricted. In particular, it was proved that the cosphere bundle must be equivariantly contacto-
morphic to Tn × Sn−1, which, as we will see, forces Q to be homeomorphic to Tn.

In the 2-dimensional setting, the requirement for toric integrability is particularly stringent, and only two
canonical cases emerge:

� The round 2-sphere S2 with its standard metric, where the high degree of symmetry ensures that
geodesics are great circles and the flow can be expressed in terms of rotational invariants.

� The flat 2-torus T 2, where geodesics are represented by straight lines with constant speed, and the
periodic structure naturally supports a toric action.

A striking aspect of these examples is that their cosphere bundles, S(T ∗S2) and S(T ∗T 2), are more than just
phase spaces for the geodesic flow—they also carry intrinsic contact structures. The unit cotangent bundle is
endowed with the canonical contact form

λ =
∑
i

pi dq
i,

which induces a contact structure that organizes the dynamics in a way that is amenable both to classical
analysis and to semiclassical quantization. In toric integrable systems, this contact structure is augmented
by the torus symmetry, making S(T ∗Q) a contact toric manifold [4, 5].

More concretely:

� For the round 2-sphere, the cosphere bundle S(T ∗S2) is diffeomorphic to the 3-sphere S3. The standard
contact structure on S3, often introduced via the Hopf fibration, aligns with the rotational symmetry
of the sphere, and the associated Reeb flow captures the essence of the geodesic dynamics.

� For the flat 2-torus, S(T ∗T 2) is diffeomorphic to the 3-torus T 3. Here, the natural toric fibration endows
the cosphere bundle with a canonical contact structure, and the straight-line geodesics lift to orbits of
the Reeb flow on T 3.

The Reeb flow, defined as the flow of the unique vector field associated with a given contact form, plays a
central role in connecting the geometric structure with the dynamics. Its orbits correspond to the classical
trajectories of the geodesic flow, and the toric symmetry ensures that these orbits are confined to invariant tori.
This structure not only simplifies the dynamical picture but also lays the groundwork for a clear semiclassical
correspondence.

3 Symplectization and Lagrangian Cones

The notion of symplectization serves as a powerful bridge between the dynamics encoded on the contact
boundary of the cosphere bundle and the richer, full-scale classical evolution in the bulk. In our context,
symplectization is achieved by considering the punctured cotangent bundle T ∗Q \ {0} equipped with its
natural symplectic form

ω = dλ,

where λ =
∑

pi dq
i is the canonical Liouville one-form. This construction effectively extends the contact

structure of S(T ∗Q) into a symplectic cone, with the fibers scaling under the natural R+-action.

Within this framework, Legendrian submanifolds on the contact boundary—which, as we have seen, encode the
semiclassical localization of quantum states—lift naturally to form Lagrangian cones in the symplectization.
A Lagrangian cone is a conic (i.e., scale-invariant) Lagrangian submanifold on which the symplectic form
vanishes. This lifting not only preserves the intrinsic geometric properties of the Legendrian but also embeds
it into a setting where classical Hamiltonian dynamics are more transparently visible.
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This picture can be viewed as a geometric incarnation of the holographic principle. Here, the contact boundary
(home to quantum states and observables) encapsulates sufficient information to reconstruct the bulk symplec-
tic dynamics. In essence, the data on S(T ∗Q)—through the structure of its Legendrian submanifolds—acts
as a “shadow” from which the full Lagrangian geometry in T ∗Q \ {0} emerges [5].

Furthermore, the homogeneous nature of the symplectization under the R+-action aids in the analysis of
scaling properties and invariants within the system. This link to broader themes in symplectic topology
enriches our understanding of integrability, suggesting that the study of Lagrangian cones may reveal new
aspects of both classical trajectories and quantum spectral features.

4 Quantum Encoding and Projection in the Integrable Regime

Having set the stage with the classical and symplectic structures, we now clarify the quantum perspective
underlying this framework. In the integrable regime, quantum mechanics on the base manifold Q is not
isolated; rather, it becomes encoded in the geometry of the cosphere bundle S(T ∗Q), which acts as a repository
for the semiclassical data of quantum states.

Remark: Although the quantum system is defined on Q (with wavefunctions and spectral data emerging
from operators on Q), in the integrable regime the conserved quantities provided by Noether’s theorem
induce a moment map that organizes the classical dynamics into invariant tori. In the semiclassical limit,
the eigenvalues of the quantum Hamiltonian can often be identified with lattice points in the image of this
moment map, thereby bridging the quantum description on Q with the classical structure encoded by the
moment map.

More concretely, consider a quantum Hamiltonian defined on Q. In the semiclassical limit, the eigenfunctions
of this operator tend to concentrate along invariant subsets of S(T ∗Q)—typically manifesting as Legendrian
submanifolds [3]. These submanifolds capture the “quantum fingerprints” of the underlying classical dynamics,
reflecting the integrable structure imposed by the toric symmetries and the conserved quantities of Noether’s
theorem.

The process of symplectization then plays a crucial role: it lifts the Legendrian submanifolds from the contact
boundary S(T ∗Q) into Lagrangian cones within the full symplectic bulk T ∗Q\{0}. In this way, the quantum
information encoded on Q is projected into the symplectic spacetime, thus establishing a direct correspondence
between quantum states and classical invariant structures.

Although a full semiclassical analysis—detailing the precise mechanisms of eigenfunction localization, Bohr-
Sommerfeld quantization, and the spectral implications of these geometric structures—is beyond the scope
of this exposition, this perspective lays the groundwork for future studies. In subsequent work, one may
rigorously explore how these quantum signatures on S(T ∗Q) determine spectral invariants and influence
quantum dynamics in the integrable setting.

5 Holographic Perspective

The study of integrable systems through the lens of contact and symplectic geometry naturally invites a
holographic viewpoint. Much like the celebrated AdS/CFT correspondence—where a conformal field theory
on the boundary encodes the gravitational dynamics of the bulk—the duality we explore posits that the
quantum dynamics, encoded in the cosphere bundle, are inextricably linked to the classical evolution taking
place in the symplectic bulk.

In our framework, the cosphere bundle S(T ∗Q) serves as the boundary where quantum states reside. This
contact boundary, endowed with its canonical contact structure, not only governs the phase-space restrictions
that quantum observables must satisfy but also manifests as the stage where eigenfunctions of quantum
Hamiltonians tend to localize along Legendrian submanifolds. These submanifolds act as the “fingerprints”
of the underlying classical dynamics and carry crucial information about the spectral properties of the system
[3].

Conversely, the full punctured cotangent bundle T ∗Q \ {0} plays the role of the symplectic bulk. Here,
the classical trajectories—governed by Hamiltonian mechanics—unfold on a richer canvas equipped with the
symplectic form ω = dλ. The classical invariants, which emerge as a consequence of integrability and Noether’s
theorem, manifest themselves in the geometry of this bulk space. Notably, the process of symplectization lifts
Legendrian submanifolds from the contact boundary into Lagrangian cones in the bulk, thereby cementing
the link between the quantum and classical descriptions.
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This boundary-bulk duality is more than a mere analogy. It suggests that the spectral data of quantum
Hamiltonians is a direct reflection of the classical invariants encoded in the symplectic geometry. In other
words, the quantum eigenfunctions—which cluster along specific regions of the contact boundary—can be
viewed as shadows cast by deeper classical structures in the bulk. This idea resonates with the general
holographic principle, where boundary information is sufficient to reconstruct bulk dynamics.

The holographic perspective also opens up a host of thought-provoking questions. For instance, might subtle
alterations in the contact structure on the boundary lead to novel quantum phenomena? Could a deeper
investigation into the spectral invariants of the symplectic bulk reveal unexpected connections with quan-
tum chaos or even aspects of quantum gravity? Such inquiries point towards an exciting interplay between
symplectic topology, microlocal analysis, and modern theoretical physics.

6 Symplectic Field Theory Perspective

In this section, we integrate the framework of symplectic field theory (SFT) into our discussion to provide a
deeper understanding of the interplay between the contact geometry of the cosphere bundle and the symplectic
dynamics of the bulk. SFT offers powerful analytic and algebraic tools to study pseudoholomorphic curves in
symplectizations, and here we explore these methods in detail.

6.1 Holomorphic Curves in the Symplectization

Consider the symplectization of the cosphere bundle, namely the manifold

(R× S(T ∗Q), d(esλ)),

where s ∈ R parametrizes the symplectization direction and λ is the canonical contact form on S(T ∗Q). In
SFT, one studies the moduli spaces of pseudoholomorphic curves u : (Σ, j) → (R× S(T ∗Q), J), where (Σ, j)
is a Riemann surface (possibly with punctures) and J is an almost complex structure compatible with d(esλ).
The curves are required to have finite energy and are asymptotically cylindrical near punctures, converging
to Reeb orbits in S(T ∗Q).

In the integrable regime, the toric symmetry implies a highly structured set of Reeb orbits. These orbits
serve as the asymptotic limits for our pseudoholomorphic curves and encode significant information about the
underlying dynamics. The analysis of such curves involves:

� Establishing transversality for the moduli space to ensure it is a smooth manifold (or an orbifold) of
the expected dimension.

� Understanding the compactness properties via SFT compactness theorems, which allow one to describe
the limits of sequences of pseudoholomorphic curves, often resulting in holomorphic buildings.

� Analyzing index formulas that relate the Fredholm index of the linearized Cauchy–Riemann operator
to topological invariants of the curves.

These analytic results provide refined invariants that capture both local and global features of the contact
structure on S(T ∗Q) and, by extension, of the integrable dynamics on Q.

6.2 Legendrian Invariants and Algebraic Structures

Legendrian submanifolds of S(T ∗Q) play a pivotal role in encoding the quantum fingerprints of our integrable
system. In the SFT framework, one associates algebraic invariants to these submanifolds by considering
counts of pseudoholomorphic curves with boundaries on the Legendrian. More specifically, one constructs a
differential graded algebra (DGA) where:

� The generators correspond to Reeb chords connecting points on the Legendrian.

� The differential counts rigid pseudoholomorphic disks (or curves) with boundary on the Legendrian,
with asymptotic conditions dictated by the Reeb chords.

In our setting, the toric symmetry and the presence of conserved quantities from Noether’s theorem con-
strain these counts, potentially leading to explicit algebraic descriptions. The resulting DGA encapsulates
rich information about the contact topology and provides a bridge to the spectral properties of the quan-
tum Hamiltonian. For example, homological invariants derived from the DGA (such as linearized contact
homology) may correspond to quantum invariants that emerge in the semiclassical limit.
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6.3 Gluing, Compactness, and Analytical Aspects

One of the technical cornerstones of SFT is the gluing theory, which allows one to reconstruct pseudoholomor-
phic curves from broken configurations (holomorphic buildings) arising in the compactification of the moduli
space. This process is crucial for:

� Proving invariance results of the algebraic structures under deformations of the contact form.

� Establishing relations between invariants defined on the boundary and those in the bulk.

� Analyzing the effect of perturbations in the integrable system on the holomorphic curve counts.

The rigorous analysis of gluing and compactness involves sophisticated techniques in nonlinear analysis and
elliptic PDE theory. In the integrable regime, where additional symmetries simplify certain aspects of the
moduli problem, one still encounters delicate issues such as bubbling and multiple cover contributions. Over-
coming these challenges provides a more robust connection between the geometry of S(T ∗Q) and the spectral
properties of the quantum system.

6.4 Boundary–Bulk Duality and Holography

A striking aspect of SFT is its natural expression of a boundary–bulk duality reminiscent of holographic
principles in theoretical physics. In our framework, the contact boundary S(T ∗Q) serves as the repository
of quantum data, where eigenfunctions of quantum Hamiltonians are seen to concentrate along Legendrian
submanifolds. The holomorphic curves in the symplectization, whose asymptotics are determined by Reeb
orbits on the boundary, carry information that bridges this quantum description with the classical symplectic
dynamics in the bulk.

This duality suggests that:

� The algebraic invariants computed from SFT on the boundary can be used to reconstruct aspects of the
bulk dynamics.

� Deformations in the contact structure (and hence the SFT invariants) could correspond to quantum
corrections or modifications of classical trajectories.

� There exists a precise correspondence between the structure of holomorphic curve moduli spaces and
the spectral data of the underlying quantum Hamiltonian.

Thus, the SFT perspective not only provides analytic and algebraic tools for studying integrable systems but
also offers a conceptual framework that unifies the quantum and classical pictures through holography.

6.5 Implications for Integrability and Future Directions

Embedding our integrable framework within the SFT paradigm has several profound implications:

1. Refined Invariants: The SFT invariants offer a means to quantitatively measure the interplay between
classical integrability and quantum spectral properties. They may provide new spectral invariants that
can be compared with those arising from semiclassical analysis.

2. Bridging to Quantum Dynamics: The algebraic structures emerging from the Legendrian DGA
can be interpreted as encoding quantum corrections to the classical dynamics. This link opens up
possibilities for exploring quantum chaos and the emergence of quantum gravity features in integrable
systems.

3. Holographic Reconstruction: By analyzing how holomorphic curves in the bulk encode boundary
data, one can develop a holographic reconstruction of the classical phase space from quantum invari-
ants. Such a perspective is particularly promising for studying systems where a direct semiclassical
correspondence is challenging to establish.

4. Interdisciplinary Connections: The techniques and ideas of SFT resonate with developments in
string theory and low-dimensional topology. This interdisciplinary overlap may lead to novel applications
of our framework in areas ranging from topological quantum field theory to the ADM formulation of
gravitational dynamics.

In summary, the incorporation of SFT into our integrable framework not only enriches the theoretical land-
scape but also lays the groundwork for future research into the deeper connections between symplectic topol-
ogy, quantum mechanics, and gravitational dynamics.
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7 Conclusion

In this paper, we have developed a unified geometric framework that interweaves classical and quantum
integrability through the lens of contact and symplectic geometry. By focusing on the cosphere bundle S(T ∗Q)
and its natural contact structure, we demonstrated how toric integrability, underpinned by Noether’s theorem,
constrains the classical dynamics to invariant tori and organizes the spectral properties of quantum systems
in the semiclassical limit. The process of symplectization lifts this contact structure into a full symplectic
bulk, where Legendrian submanifolds are naturally elevated to Lagrangian cones, thereby providing a concrete
geometric manifestation of the correspondence between classical trajectories and quantum eigenfunctions.

We further extended this perspective by embedding our discussion within the framework of symplectic field
theory. Through the analysis of pseudoholomorphic curves in the symplectization of S(T ∗Q), we obtained
refined algebraic invariants that capture the intricate interplay between the contact boundary and the sym-
plectic interior. This SFT perspective not only reinforces the boundary–bulk duality—akin to the holographic
principle—but also suggests that deformations in the contact structure may lead to new quantum phenomena
and corrections in the integrable regime.

An intriguing aspect of our framework is the emergence of a relativistic structure in the symplectization.
In the spirit of the ADM formulation of general relativity, where gravitational dynamics are recast in terms
of Hamiltonian evolution on a suitably defined phase space, our construction hints at a reinterpretation of
Einstein’s equations as Hamiltonian equations in the integrable regime. This observation suggests that the
geometry of the cosphere bundle and its symplectization might serve as a natural bridge between integrable
systems and relativistic field theories, opening a potential avenue for future research into quantum gravity
and the Hamiltonian formulation of general relativity.

Overall, the synthesis presented herein offers a robust foundation for further exploration into the intercon-
nections between integrable systems, spectral geometry, and gravitational dynamics. By bridging classical
and quantum domains via advanced geometric and topological methods, our framework paves the way for
future investigations that could illuminate the deeper structure underlying both mathematical physics and
symplectic topology.
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