Floyd’s Triangle is a simple arrangement of the natural numbers in a triangular “ramp”:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
By grouping numbers along diagonals we generate two interesting families of sums:
With a sufficiently large Floyd’s Triangle (at least 2k–1 rows for group k), these selections yield complete cubic sequences.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
For group k (using rows r = k to 2k–1), the slope‑right diagonal sum is:
Sright(k) = (7k³ – 3k² + 2k)/6.
Group k | Formula | Value |
---|---|---|
1 | (7×1³ – 3×1² + 2×1)/6 | 1 |
2 | (7×8 – 3×4 + 2×2)/6 | 8 |
3 | (7×27 – 3×9 + 2×3)/6 | 28 |
4 | (7×64 – 3×16 + 2×4)/6 | 68 |
5 | (7×125 – 3×25 + 2×5)/6 | 135 |
6 | (7×216 – 3×36 + 2×6)/6 | 236 |
7 | (7×343 – 3×49 + 2×7)/6 | 378 |
8 | (7×512 – 3×64 + 2×8)/6 | 568 |
9 | (7×729 – 3×81 + 2×9)/6 | 813 |
10 | (7×1000 – 3×100 + 2×10)/6 | 1120 |
For group k, the slope‑left diagonal sum is:
Sleft(k) = (7k³ – 6k² + 5k)/6.
Group k | Formula | Value |
---|---|---|
1 | (7×1³ – 6×1² + 5×1)/6 | 1 |
2 | (7×8 – 6×4 + 5×2)/6 | 7 |
3 | (7×27 – 6×9 + 5×3)/6 | 25 |
4 | (7×64 – 6×16 + 5×4)/6 | 62 |
5 | (7×125 – 6×25 + 5×5)/6 | 125 |
6 | (7×216 – 6×36 + 5×6)/6 | 221 |
7 | (7×343 – 6×49 + 5×7)/6 | 357 |
8 | (7×512 – 6×64 + 5×8)/6 | 540 |
9 | (7×729 – 6×81 + 5×9)/6 | 777 |
10 | (7×1000 – 6×100 + 5×10)/6 | 1075 |
The slope‑right diagonal sums correspond to the structured tetragonal anti‑prism numbers (OEIS A100182), given by the formula:
Sright(k) = (7k³ – 3k² + 2k)/6.
The slope‑left diagonal sums form a related cubic sequence:
Sleft(k) = (7k³ – 6k² + 5k)/6.
For additional details and related sequences, please see:
OEIS: Structured Tetragonal Anti‑Prism Numbers (Slope‑Right Diagonals)
and
OEIS Search: 1, 7, 25, 62, 125, 221, … (Slope‑Left Diagonals).
These investigations reveal that even a simple arrangement such as Floyd’s Triangle contains hidden layers of combinatorial beauty and symmetry.